Интернет - преподавание

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » Интернет - преподавание » Математика » Формулы


Формулы

Сообщений 1 страница 2 из 2

1

- ФОРМУЛЫ СОКРАЩЁННОГО  УМНОЖЕНИЯ

    * Квадрат суммы двух величин равен квадрату первой плюс удвоенное произведение первой на вторую плюс квадрат второй. (a+b)2=a2+2ab+b2
    * Квадрат разности двух величин равен квадрату первой минус удвоенное произведение первой на вторую плюс квадрат второй. (a-b)2=a2-2ab+b2
    * Произведение суммы двух величин на их разность равно разности их квадратов. (a+b)(a-b)=a2-b2
    * Куб суммы двух величин равен кубу первой плюс утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй плюс куб второй. (a+b)3=a3+3a2b+3ab2+b3
    * Куб разности двух величин равен кубу первой минус утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй минус куб второй. (a-b)3=a3-3a2b+3ab2-b3
    * Произведение суммы двух величин на неполный квадрат разности равно сумме их кубов. ( a+b)(a2-ab+b2)=a3+b3
    * Произведение разности двух величин на неполный квадрат суммы равно разности их кубов. (a-b)(a2+ab+b2)=a3- b3

Очень часто приведение многочлена к стандартному виду можно осуществить путём применения  формул сокращённого умножения . Все они доказываются непосредственным раскрытием скобок и приведением подобных слагаемых. Формулы сокращённого умножения нужно знать наизусть:
http://uztest.ru/plugins/abstracts/91_1.gif

Пример. Докажите формулу a 3 + b 3 = ( a + b )( a 2 – ab + b 2 ).

Решение. Имеем ( a + b )( a 2 – ab + b 2 ) = a 3 – a 2 b + ab 2 + ba 2 – ab 2 – b 3. Приводя подобные слагаемые, мы видим, что ( a + b )( a 2 – ab + b 2 ) = a 3 + b 3, что и доказывает нужную формулу.

Пример. Упростите выражение (2 x 3 – 5 z )(2 x 3 + 5 z ).

Решение. Воспользуемся формулой разности квадратов, получим: (2 x 3 – 5 z )(2 x 3 + 5 z ) = (2 x 3 ) 2 – (5 z ) 2 = 4 x 6 – 25 z 2.

Ответ. 4 x 6 – 25 z 2.

0

2

ОЛРОЛРОО

0


Вы здесь » Интернет - преподавание » Математика » Формулы


Рейтинг форумов | Создать форум бесплатно